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a) When R((l , we have from (4.6) 

Urn- Mv~~“~;“‘R~~-~ sin 0 cos 8F (q) (4.7) 

where F(q) is a monotonically increasing function, F(q)” q when ~)<1 and F(q)- r/i when n> 1. 
b) When R> 1 within the bounds of the region of the main cell r>Z>l (4.4), for VP from 

(4.6) we have the asymptotic form 

- ue- M~-“‘Y,‘%$‘R-‘~ ctg (0) P (q) (4.8) 

whereP($is well approximated by the function P(n)- n (1 + 11*)-'. The slower nature of the 
decrease in the azimuthal velocity (4.8) in this region than in the case of the radial and 

vertical velocities (4.4) should be noted. Formulae (4.7) and (4.8) enable one to establish 
the dependence of the intensity of the twisting v~((T,z) on the radius when z = const in the 

main cell. When R>l , the motion is close to the rotation of a solid body (uQ - r) while, 

when R>l, it is close to a potential vortex (UC - l/r). 

The author thanks A.S. Kabanov and O.V. Kaidalov for their discussion of the results and 

YU. K. Gormatyuk for his help in constructing the stream lines. 
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DEPENDENCE OF THE DISPERSION CURVES OF INTERNAL WAVES 
OF A STRATIFIED OCEAN ON THE VAISALA-BRENT FREQUENCY* 

V.V. RYNDINA 

Under the condition that the minimum of the Vaisala-Brent frequency (VBF) 

is greater than the Coriolis parameter, a parametric form of the dispersion 

curves of the internal gravitational waves in an ocean of constant depth 

with continuously variable VBF is obtained. This form is used when 

obtaining estimates of the dc displacements as a function of the VBF 

displacement and when isolating the VBF which admit of a unique restoration 
from a sequence of dispersion curves. 

1. Formulation of the problem. We consider a horizontal continuously stratified 

ocean of constant depth H. Its upper surface is the siy plane, and the z axis is directed 

vertically upwards. The dispersion curves of the internal gravitational waves are found /l/ 

as the eigenvalues o? = o&,'(k') of the boundary value problem 

w" p (2) W' + CL (3) --ox WZ k2W ~0, W(- H)= 11’(O)= 0 (1.1) 
g 
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where r(z) is the VBF squared, f is the Coriolis parameter, g is the acceleration due to 

gravity, k is the wave number, and o is the frequency of the free harmonic waves. When (1.1 
is obtained in /l/,W(z)is understood to be the amplitude of the vertical velocity component 

of the fluid particles. In spectral analysis of problem (l.l), the meaning of W(z) is a 

matter of indifference. For convenience, we shall assign to W(z) the dimensions of length, 

i.e., the same as for the variable z. 
It was shown in /l/ that, under the natural condition min {:I (z): z E I-H,Ol}> f”, there 

is a denumerable system of eigencurves {I$= m,"(k')}, the functions a,,'(!?) are positive and 
increase as kZ increases, while 

limm,2(k2)= 1', 
h--o 

lim y,2 (k2) = [y;, p (z) 
9-m 

and we have the asymptotic form 

on2 (k2) = f2 + k*/h,” + 0 (k”), k + 0 

where h,," is the n-th eigenvalue of the boundary value problem 

(p.+w’)’ + ho (p (z) - f") p*W = 0, W (-H) = W (0) = 0 (1.3) 

Problem (1.3) has a denumerable sequence 

Our aim is to obtain the parametric form 

considering the converse spectral problem and 

a function of the VBF displacement. 

(1.2) 

of positive and simple eigenvalues A,"< h,"< ., 
of the dispersion curve, and to use it when 

for estimating the displacement of a,,* (k?) as 

2. Construction of Green's function and reduction of problem (1.1) to an 
integral equation. In the same way as in /l/, we can transform from problem (1.1) to the 

problem 

(p*W')' + h (p (z) - f’) p*W - k2p,W = 0 

W (-11) = W (0) = 0, h = k2 (co? - f”)-’ 
(2.1) 

Since the equation 

has the solutions /2/ 

(2.2) 

it is convenient to write (2.1) as 

(p*W')' + (hp (2) - h2g2) p* W = (--h'g2 + y' + k') p*W ~ 

and to transform from the parameters h and k to the parameters i and s, where s = h'g'- hf2- k’. 

Instead of problem (2.1) we will consider the corresponding problem 

(p*W')' + (hp (2) - h"gL) p* w = - sp*w 

IV-H) = W(O)= 0 
(2.3) 

It is easily verified directly that s = 0 is not an eigenvalue of problem (2.3) with 

any real h. Hence, using the solutions (2.2), we can construct for problem (2.3) Green's 
function 

Boundary value problem (2.3) is equivalent to the integral equation 
0 

Y (z) = s 1 K (z, t, h) y (t) dt 

y(z)=,;:,(z) w (4, K (2, t, A)= - I/P, (z)P* (t)G (2, t, k_) 

(2.4) 

(2.5) 
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3. Parametric equations of the dispersion curves. The oscillation conditions 
/3/ hold for the kernel K(z, t, h) with any real 5. Iience integral Eq.(2.5) has a denumerablc 
set of positive and simple eigenvalues sl(X)<%(h)(... for any real 3, /3/. 

The pair of equations 
J$ (& _ !?)-i z-2 A, s,,(h) =: &zg' _ hfz - k* (3.1) 

defines the dispersion curve w* = ox,, (Fz) in parametric form, provided the parameter h runs 
over the set of values of the function 

h* fP) = kS (W&n (I;') - I")-1 

considered on the ray (0, i m). It was shown in /l/ that dh,,fdk2>0, keE(O, -i_ m). Hence 
the set of values of the function h, is the ray (c,, + M), where e, = iim&(k'), k-0. It 

follows from the asymptotic form (1.2) that %= hk,,. 
T3e sequence (c,z)is increasing. 
For, for fixed L>c,, one of the points of intersection of the lines 

$&Z (wa _ fs)-2 - k?fa (& - p)-' _ k" = + (h) (3.2) 
P (69 - /*j-l = k, Is" > 0, Cl9 > 0 

in the Pw= plane lies on the m,-th dispersion curve. We introduce the flotation y==lez,s= 
P (~?-fl)+. The lines (3.2) wil.1 intersect if and only if the lines 

5 = h, y = g%? - f'z -s, (h),)s > 0, $ > 0 (3.3) 
intersect in the ay plane. 

The lines (3.3) will intersect at a unique point for those, and only those, h for which 
we have 

h>Fn(Vz SL(k) = (Q')+ If* i I/P-i- %Ps,~ (&)I (3.4) 

The number P, is obviously defined as the value of h for which the equals sign is obtained 
in (3.4). Since c, = F,(c,) < F&c,), then en+t >e,. 

Since the sequence {en}, f&'-R") are increasing, it follows that m, = n. 
on solving system (3.1) for k2 and o*, we obtain the parametric equation of the dispersion 

curve c$ = w;" (k?) in the form 

k.2 = ?L*gz - ?+A - s,, (h), 02 = hg2 - L-1 s,, (h), h E (hR f- 00) (3.5) 

4. Specification of the dispersion curve in implicit form. It follows from 
(3.11 that the equation 

defines the n-dispersion curve in implicit form. 
In the special case when p(z)= par we obtain 

s, (h) = g%2 - FL&" + n"n%-2 -t" Vn i_$g-' 

and Eq.(4,1) has the solution 

OS = f” + @ +,, _ f’)@” + n2n2H-Q + “/* po2g-2)-’ 

which is the same as the well-known representation of the n-t& dispersion curve /I/. 
The dependence of s,, on h cannot be calculated explicitly in the cgeneral case; but it can 

be asserted that s*(h) is a holomorphic function on the real axis /4/. 
For, the family of integral operators K(h) with symmetric real kernel K(z,t,h) is a self- 

adjoint and holomorphic family of type (A) of compact operators, defined on the real axis, 
and, for any hi R, the operator K(i) has simple non-vanishing eiqenvalues. 

Some applications of the parametric form (3.5) of the dispersion curve are considered 
below. 

5. Estimation of the shift: of the frequency of free oscillations as a 
function of the VBF shift. We shall confine ourselves to functions k~ (z) which belong to 
the parametric family r, consisting of polynomials of not higher than a fixed degree r 

,& Vj8 cj-: [cij', c?'], j--_ 0, l,Z,...,r 

and satisfying the condition RZ IT- mill {rt (2) : z. E I-Er,ol, !L C‘ I’} > fZ. 
FOT an admissible value c == (c*, ",, . ., q), we denote a function of the family r b? 

64 (Z,G). The kernel. K(z, t,h)= K(z,t,h,e) of the inteqral operator in (2.5) depends analyti- 
cally on i, and c for real i.: e E II _: [rl((l), cl(")1 + IQ(~), i$)] :\ . . . :- ICI(“), c?(')l. we will denote the 
eigenvalues of the integral operator with kernel h' (z, C, h, C) by s,, (A, c). Arguing in the same 



way as above, we find that s,(h,c) are holomor_phic functions of h and c in R x n. The 

corresponding eigenfunctions of boundary value problem (2.31, normalized by the condition 
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E p.+(~)W,~(z, A, c)dz = dJ 
--H 

where d is numerically equal to unity and has the dimensions of length, also depends holo- 

morphically on the parameters h and c in R x n. 
We consider the functions ~(2, v) = y0 + ylz + . . . + yrzI’ (y = a, f3), which belong to the 

family r. Corresponding to these functions we have sequences of eigenvalues {sn (L s)) and 
sequences of dispersion curves (w2 = ~,,~(k?, v)}. 

We obtain global and local estimates 

I Awn21 < All AIL II, AP = CL (2, a) - P (z, B) 

AU,* = o,,~ (k*, a) - o,,~ (P, fi) 

with different values of A and the norm 11 ApI/ defined below. 
We consider the equation 

s, (h,, a) - s, (L P) = 8 (A,' - h,') - f" (A, - %) (5.1) 

with respect to real variables h, and ? L2, with the same dimensionality as k?o-2. By (4-l), Eq. 

(5.1) has the solution 

h, = y, = l? [~,~(k*, a) - f*l-', h, = y, = k2 [co,,? (k*, fi) - f21-‘. 

Subtracting and adding s?,(h,, a) to the left-hand side of (5.11, using Taylor's formula 

and identity transformations, we obtain the equation 

L 2 (Al, a) $- f2] (hl - h2) - (g” - 6) @I - b)’ - 

g2 (a12 - h*2) -1 T = 0, 6 = g” - ‘/p -$ (h, + 81 (hz - h,), a) 

T = s, (AZ, a) -s, (ha, (3) = 

2 
j=o 

(aj-Pj)~(h2,P+ez(a-B)), %bE(O,l) 

To find as,lah(h, c), we put s = +, (A, c), p (z) = p (z, c), W = W, (z, h, c) in Eq. (2.3) , and differentiate 

the resulting identity with respect to )i. We then multiply both sides of the result by W,(z,h,c) 
and integrate them over the interval [- H,O]. The result is 

2 (1, c)= zhgz- V(l, c)-12 (5.3) 

II 
Y (h, c) = d-3 s (P (z, e) - fZ)p* (2, c) U',? (2, a, c) d: 

-" 

In the same way, we obtain 

Q (2, a, e) = $; (zjp* (2, e)) + az$* (z, c) 

(5.4) 

Substituting (5.3) for &,/8h(h,,a) into (5.2), we arrive at the equation 

6 (A, - M2 - y (A,, a)@, - I*) + T = 0 (5.5) 

We distinguish two cases: 1) 6 = 0 (6 = 0 in the case p z const), 2) 6 # 0 (it can be 

shown that 6> 0 if p + const, n = 1). By (5.5), in the first case we have k, - h, = TV-I(&, a), 
and in the second h, - h, = (26)~'[Y (h,, a) * 1/v' (h,, a) - 46~1. 

We shall discuss case 2) in more detail. Henceforth, for h,, h, we substitute Y,, Yz 
respectively. 

From (5.1) we have the expression for T: 

T = s, (y2. a) -s, (yl, a) - 8 (Y,' - y,*) + f2 (h - h) 

Using (5.3), we obtain 

(5.6) 

(5.7) 
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From (5.7) we have 

We can dispense with the difference m(a) - f2 in the denominator if we confine ourselves 
to estimating 1 y, - yz / for fixed a~ II, and fi fairly close to a. 

Since .s, (h, c) is holomorphic with respect to h and e in R and n, and recalling (5.31, 
(5.41, it follows that the dispersion curves wz = ~,~'(k",c) are holomorphic with respect to c 
in n. Hence, for fixed k',the difference Yl - Y2 tends to zero as @-+ a. Since, as 
B--+a, we have ~~O,~(y~,a)~m~-~~>0,6 is bounded, then, as p-fa, 

YI --ya= (2R)-L[v(yI. a)- j/v"(y~. a)- 46-c) 

Since, for fi = a, we have v' (yl, a) - 46~ = v'(yI, u)> 0,. there is a neighbourhood n(a) = 

la, - cl, a, + &I’1 Y . . . +[a,-&e,,a,+&,.‘l,~j)O, Ej’>O,j=O,i,....r of the point a, lying in 

n, such that, for p E n(a), we have v' (y,, a)- 46~ > 0, and hence 

j y, - Y*l < 2 1% Iv-l (Yl7 a), s 6% n (a) (5.0) 

We find an upper limit for I? /. Using Eq.(5.4) in the expression for z, and noting that 
+,/c?z = -pLp*ig, we obtain 

Putting 

// A,U // = max 
i 

we obtain from the previous equation the limit 

ITlallL\P(l[&+ J=;$=-@ -t-Y,]. 

M (c) = max (u (z, c) : z E [ - H, 01) 

Since p (z, p f B2 (a - p)) = 0,~ (2, a) -i- (1 - Bz) P (z, p), then M (p +- e2 (a - B)) < max W (4 
M (fi)} = M (a, p) and for 1 t 1 we obtain 

(5.1Oj 

To find the required lower limit for v (Yl, a) , we put i. = Y,, v(z) = p (z, 4, W = bVn (2, yl, a) 
in Eq.(2.1). Multiplying both sides of the result by W,,(z, yl, a) and then integrating the 
result over the interval C-H, 01, we find 

2’(yl, a) = p* (z, a) W,‘z (z, y,, u) dz ] > $ = on2 (k2, a) - f” (5.11) 

By (5.8) and (5.10) we have 

From (5.12) we obtain 

We can also obtain from (5.12) a limit which is independent of k: 

(5.13) 
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The limit (5.13) follows from the inequality yz>h,,"(@), where h,"(p) is the n-th eigen- 

value of problem (1.3) with p (z) == ~((z, p) and from the lower limit of h,,"(p), obtained on 

reducing problem (1.3) to an integral equation. 

From (5.9), (5.10), (5.11) we obtain 

I AQ,,’ I < 2A (k, a, I’4 II 4 II, I A%’ I =C 2 B (a, P) II @IL 

B E n (a) 
It follows from (5.13) that 1 AwW2 1 tends uniformly to zero with respect to h.* in (0, + m) 

and n in the set of integers as 11 ApI(+O. 
Parametric families r of a different type can be similarly discussed, when the upper face 

of the ocean is a free surface. 

6. Application of Green's function to the problem of restoring the VBF, 
given the dispersion law. It is useful to specify Green's function explicitly when 

considering the possibility of uniquely restoring the function IL(Z) from the sequence of 
dispersion curves. Notice that, to find p (z), it suffices to be able to restore the function 

a (A), apart from a constant factor, from the sequence of dispersion curves. For, in the 
case when a, (h) = Aa (h), where A is a non-zero constant, we have the representation 

H 

al(h)= A s 1 

P* (t - HI 
,+4-H) ,jt. 

Using the expression for the inversion of the Laplace transform and the connection of the 
function p* with k, we obtain, for TV (0, H), cs>O, 

o-+x 

p (t - H) = g -$( In s al (A) .#g@-“) dh) (6.1) 
“--ia, 

Hence p (z)is uniquely restored from the function Aa (Q and the result of restoration 
is independent oftheconstant A. 

Let us show that a(h) is sometimes uniquelv defined apart from a constant factor bv means 

of the first trace .4,(1j of the integral operator with kernel K (z, t, A). 
We can write for A, (h), using (2.4): 

(6.2) 

b(h) = s’ p*(z) WI* (z) Wz* (z) dz 
--H 

The function A,(h) is fully defined by the sequence of dispersion curves of the first of (6.2). 

This follows from (4.1) and the fact that s,,(h), A,(1) are analytic on the real axis. 
From the second of (6.2), the function a(A) is uniquely defined, apart from a constant 

factor, by A, (h), if a(h) and b(h) have no common zeros. 

To sum up, if we know that 1~ (z) belongs to the set of functions for which R (i.) and b(h) 
have no common zeros, then, given the sequence of dispersion curves, p(z) can be uniquely 
restored by (6.1) from the class of curves corresponding to this set. 

If CL (z) = pa> then the functions 

a(h) = J+e$, b(h) = H”e\ [cl, .\ - y 1 - : 
.\ = H (hg - ’ 12 I”,, ‘y) 

have no common zeros. 
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